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1 Duality

1.1 Notions of duality for algebraic objects

1.1.1 Duality of vector spaces

Definition 1.1. Let V be a vector space over a field K. Then we have the dual vector
space, V ∗ = Hom(V,K).

Recall from linear algebra that we have a natural map V → V ∗∗ taking v 7→ (f 7→ f(v))
for f ∈ Hom(V, k). Additionally, V ∗ is isomorphic to V if dim(V ) < ∞, but there is no
natural isomorphism. This does not hold in the general case; if V =

⊕∞
n=1K, then V has

countable dimension, but dim(V ∗) is uncountable.
More generally, for objects in a category, we pick a “dualizing object,” and let the dual

be the set of homomorphisms to that object.

1.1.2 Duality of free modules

For free modules over a ring R, we take the dualizing object to be R. Then M∗ =
Hom(M,R), and M∗∗ ∼= M if M ∼= Rn. This also holds if M is projective. We have M⊕N
is free, so M ⊕N ∼= (M ⊕N)∗∗; then it is not difficult to obtain the property for M .

1.1.3 Duality for finite abelian groups

Since abelian groups are modules over Z, one might think that you should make Z the
dualizing object, but the only homomorphism from G→ Z is the trivial one. So make the
dualizing object Q/Z.

Proposition 1.1. Let G be a finite abelian group. Then G ∼= G∗.

Proof. G is a direct sum of cyclic groups, so it is enough to check for when is G cyclic.
Whe have G ∼= Z/nZ, which means that G∗ = Hom(G,Q/Z) ∼= {qZ ∈ Q/Z : n(qZ) = Z} =
{0, 1/n, 2/n, . . . , (n− 1)/n}. This is cyclic of order n.

We also get that G ∼= G∗∗, and this isomorphism is considered natural.
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1.2 Applications of duality

1.2.1 Dirichlet characters

Definition 1.2. A Dirichlet character is an element of the dual of (Z/NZ)∗, the group of
units1 of the ring Z/NZ.

Replace Q/Z by S1, unit circle in the complex numbers. We have the map Q/Z→ S1

sending x 7→ e2πix, so Q/Z ∼= elements of finite order in S1.

Example 1.1. For N = 8, (Z/NZ)∗ = {1, 3, 5, 7} with 12 = 52 = 72 = 1. The characters
are

1 3 5 7

χ0 1 1 1 1
χ1 1 −1 1 −1
χ2 1 1 −1 −1
χ3 1 −1 −1 1

Dirichlet was interested in this because he defined the Dirichlet L-function∑
n≥1

χ(n)

ns
,

where χ is a Dirichlet character. When N = 1 and χ is the trivial character, we get the
RIemann Zeta function.

Definition 1.3. Let χ1, χ2 be Dirichlet characters for the same N . Then the inner product
of χ1, χ2 is

(χ1, χ2) :=
∑

x∈(Z/NZ)∗
χ1(x)χ2(x).

Proposition 1.2. Dirichlet characters are orthogonal.

Proof. Let χ1 6= χ2, and define the homomorphism χ = χ1χ2. Then (χ1, χ2) = (χ, 1),
where 1 is the trivial character (sends everything to 1). Since χ1 6= χ2, χ 6= 1, so let
a ∈ Z/NZ with χ(a) 6= 1. Then∑

x∈(Z/NZ)∗
χ(x) =

∑
x∈(Z/NZ)∗

χ(ax) = χ(a)
∑

x∈(Z/NZ)∗
χ(x),

where multiplying by a just reindexes the elements of Z/NZ. So we have

(χ1, χ2) = (χ, 1) =
∑

x∈(Z/NZ)∗
χ(x) = 0.

1We are being sloppy here by using ∗ to both mean dual and the group of units. In the case of ((Z/NZ)∗)∗,
we mean Hom((Z/NZ)∗, S1).

2



1.2.2 The Fourier transform

Definition 1.4. Suppose f is a complex function on a finite group G. The Fourier trans-
form f̃ is a function on G∗

f̃(χ) = (χ, f) =
∑
x∈G

χ(x)f(x).

Duality for infinite abelian groups (with a topology) follows a few rules:

1. The dualizing object is S1.

2. Groups should be locally compact

3. Homomorphisms should be continuous.

Example 1.2. Let G = Z. Then G∗ = Hom(Z, S1) ∼= S1. Let H = S1. Then H∗ is the
continuous homomorphisms from S1 → S1 (z 7→ zn for n ∈ Z). These two groups are dual
to each other.

The fourier transform takes function on S1 to a fourier series (a function on Z) by
sending

f 7→
∑
n

cne
2πinz, cn =

∫
z∈S1

e−2πinzf(z) dz.

If G = R, then G∗ = Hom(R, S1) ∼= R. This gives the fourier transform on R.

1.2.3 Existence of “enough” injective modules

Definition 1.5. An injective module I is a module with the following property. If the
sequence 0→ B → A is exact, then any map B → I induces a homomorphism A→ I.

0 B C

I

It is not immediately clear how we can find injective modules. The first step is to find
a divisible abelian group.

We want to say that every module is a submodule of an injective module.

Definition 1.6. A group G is divisible if given g ∈ G and n ∈ Z+, there exists some h ∈ G
with nh = g.

Example 1.3. Q/Z is a divisible abelian group.

Finitely generated abelian groups are never divisible, except for the trivial group.
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Proposition 1.3. Let I be a module. If it is divisible as an abelian group, it is injective
as a module.

Proof. Pick a ∈ A with a /∈ B. We want to extend f to a. Pick the smallest n > 0 so that
na ∈ B if n exists. Extend f to a by putting f(a) = g, where g ∈ I satisfies ng = f(x). If
n does not exist, then put f(a) equals anything (it doesn’t matter what we put here). Now
extend f to all of A using Zorn’s lemma (choose the maximal extension from submodules
of A to I).

Proposition 1.4. Every abelian group is contained in an injective module.

Proof. By the previous proposition, Q/Z is injective, and given an abelian group G with
an element a 6= 0 in G, we can find a homomorphism f : G→ Q/Z such that f(a) 6= 0. So
any abelian group G is a subset of a (possibly infinite) product of Q/Zs.

Proposition 1.5. Let R be a ring. Then the dual R∗ is an injective R-module

Proof. The key point is that HomZ(R,Q/Z) is an injective R-module. This is the dual
of R as a Z-module. Be careful; Q/Z is a Z-module but not necessarily an R-module. If
f ∈ Hom(R,Z) and r, s ∈ R, define fr by fr(x) = f(rs) This makes HomZ(R,Q/Z) a
right R-module.

The second key point is that HomR(M,Hom(R,Q/Z)) ∼= HomZ(M,Q/Z); this is easy
but confusing to actually write out, so we leave it as an exercise. So finding an induced
homomorphism from A→ Hom(R,Q/Z) is the same problem as finding an induced homo-
morphism from A→ Q/Z, which is possible because Q/Z is injective.

0 B C

Hom(R,Q/Z)

=

0 B C

Q/Z

So R∗ = Hom(R,Q/Z) is injective, as claimed.

2 Limits and Colimits

Recall from the lecture on category theory that a limit of a family {Gα} is a universal
object with morphisms from G→ Gα for each α.

2.1 Colimits

Definition 2.1. A colimit G of the family {Gα} is universal object with morphisms from
Gα → G for each α. In other words, a colimit is the same concept as a limit, but the
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arrows (morphisms) go the other way.

Y

G

G1 G2 G3

ϕ

f1

g1,2 g2,3

f2

g3,1

f3

A special case is that if Gi → Gi+1 is injective for all i, then the colimit, G, is more or
less the union of the Gi.

G0 G1 G2 G3 · · ·

G

Example 2.1. Q/Z is the union of Z/Z ⊆ (12Z)/Z ⊆ (16Z)/Z ⊆ ( 1
24Z)/Z ⊆ · · · .

2.1.1 Examples of colimits

Recall that the kernel f : A → B, where A,B are groups is the equalizer of f and 1, the
trivial map from A→ B; this is the limit of A,B with the morphisms f,1.

Definition 2.2. The cokernel X of A and B is the colimit of A,B with morphisms f,1.

A B Y

X

f

1

This can also be thought of as the coequalizer of f,1, where the coequalizer has the
same definition as the equalizer but with the arrows reversed.

Definition 2.3. The push-out X is the colimit of A and B with morphisms f : A → C
and g : B → C.
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Y

X

A B

C

ϕ

p1

f g

p2

2.2 Exact sequences of colimits

When do colimits preserve exactlness? Say we have the following diagram with rows exact:

...
...

...

0 Ai Bi Ci 0

0 Ai+1 Bi+1 Ci+1 0

...
...

...

Then
���0→ colimAi → colimBi → colimCi → 0

is right exact but not left exact.

Example 2.2. Here is an example where the colimit is not left exact.

0 Z Z Z/2Z 0

0 Z Z Z/2Z 0

Z Z Z/2Z

×2

×2

×2

×2

×2 ×2

The colimit Z⊕ Z/2Z ×2−−→ Z⊕ Z/2Z is not injective.

When do colimits preserve exactness, then?
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Definition 2.4. A directed set S is a partially ordered set such that if a, b ∈ S, there exists
a c with a ≤ c and b ≤ c.

Example 2.3. The set N is directed under the usual ordering ≤.

Definition 2.5. A direct limit is a colimit of a family indexed by a directed set.

Proposition 2.1. Direct limits preserve exactness.

Proof. Suppose S is a directed set and we are taking the colimit over a family indexed by
S. We have modules Ai for i ∈ S with Ai → Aj with i < j. Every element of the colimit
is represented by some a ∈ Ai for some i. This is because any element of the colimit is
represented by some sum of elements aj ∈ Aj for various j ∈ S; then we can pick c ≥ all
these j, and take the sum of the images of aj in Ac.

Now suppose we have exact sequences 0 → Ai → Bi → Ci → 0 for i ∈ S. We want to
show that colimAi → colimBi is injective. Pick a ∈ colimAi. Then a is represented by
some ai ∈ Ai for some i ∈ S. Now suppose that ai has image 0 in colimBi. If bi is the
image of si, then bi = 0 in the colimit. So for some j, the image of bi in Bj is 0. So if aj is
the image of ai in Aj , then aj has image 0. Then aj = 0, which makes Aj → Bj = 0, and
so sj = 0 in the colimit.

2.3 Inverse limits and the p-adic integers

Look at G = Z[1/p]/Z ⊆ Q/Z. This is the colimit of Z/pZ ⊆ Z/p2Z ⊆ Z/p3Z ⊆ · · · . What
is G∗? We get

Hom(Z/pZ, S1)← Hom(Z/p2Z, S1)← Hom(Z/p3Z, S1)← · · ·

Definition 2.6. The inverse limit is the limit of a directed family {Aα}.

So the dual of a direct limit is the inverse limit of the duals. The dual for our example
above is the p-adic integers Zp. Look at

Z/pZ← Z/p2Z← Z/p3Z← · · ·

Then the p-adic integers is the inverse limit of this. We get the set of sequences of base p
expansions going to the left an infinite distance. For example, if p = 3, such a sequence
would look like (. . . , 2, 1, 2, 2, 0, 1, 2). Addition and multiplication are indeed well-defined
componentwise.

Does taking inverse limits preserve exactness? The answer is no, even if the set is
directed.
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Example 2.4. Take the following diagram, where the rows are exact:

0 Z Z Z/2Z

0 Z Z Z/2Z 0

0 Z Z Z/2Z 0

×2

×3 ×3

×2

×3

×2

×3 ×2

×2

The inverse limits give us 0→ 0→ 0→ Z/2Z→ 0, but this is not exact.

However, there is hope! Taking inverse limits preserve exactness if the Ai preserve the
Mittag-Leffler2 condition.

2This sounds like two people, but it is actually just one.
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