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1 Duality

1.1 Notions of duality for algebraic objects
1.1.1 Duality of vector spaces

Definition 1.1. Let V be a vector space over a field K. Then we have the dual vector
space, V* = Hom(V, K).

Recall from linear algebra that we have a natural map V' — V** taking v — (f — f(v))
for f € Hom(V, k). Additionally, V* is isomorphic to V if dim(V') < oo, but there is no
natural isomorphism. This does not hold in the general case; if V = @, | K, then V has
countable dimension, but dim(V*) is uncountable.

More generally, for objects in a category, we pick a “dualizing object,” and let the dual
be the set of homomorphisms to that object.

1.1.2 Duality of free modules

For free modules over a ring R, we take the dualizing object to be R. Then M* =
Hom(M, R), and M** = M if M = R"™. This also holds if M is projective. We have M & N
is free, so M & N = (M @ N)**; then it is not difficult to obtain the property for M.

1.1.3 Duality for finite abelian groups

Since abelian groups are modules over Z, one might think that you should make Z the
dualizing object, but the only homomorphism from G — Z is the trivial one. So make the
dualizing object Q/Z.

Proposition 1.1. Let G be a finite abelian group. Then G = G*.

Proof. G is a direct sum of cyclic groups, so it is enough to check for when is G cyclic.
Whe have G = Z/nZ, which means that G* = Hom(G,Q/Z) = {qZ € Q/Z : n(qZ) =7} =
{0,1/n,2/n,...,(n—1)/n}. This is cyclic of order n. O

We also get that G = G™**, and this isomorphism is considered natural.



1.2 Applications of duality
1.2.1 Dirichlet characters

Definition 1.2. A Dirichlet character is an element of the dual of (Z/NZ)*, the group of
units' of the ring Z/NZ.

Replace Q/Z by S, unit circle in the complex numbers. We have the map Q/Z — S*
sending = > €2™® so Q/Z = elements of finite order in S'.

Example 1.1. For N =8, (Z/NZ)* = {1,3,5,7} with 12 = 52 = 72 = 1. The characters
are

1 3 5 7
xo|1 1 1 1
x1|1 -1 1 -1
x2|1 1 -1 -1
xs|1 -1 -1 1

Dirichlet was interested in this because he defined the Dirichlet L-function

x(n)

ns ’
n>1

where y is a Dirichlet character. When N = 1 and x is the trivial character, we get the
RlIemann Zeta function.

Definition 1.3. Let x1, x2 be Dirichlet characters for the same N. Then the inner product
of x1, x2 Is

(x1,x2) == Y. xi(@)xa(x).

x€(Z/NZ)*
Proposition 1.2. Dirichlet characters are orthogonal.

Proof. Let x1 # X2, and define the homomorphism x = xi1%z2. Then (x1,x2) = (x, 1),
where 1 is the trivial character (sends everything to 1). Since x1 # x2, x # 1, so let
a € Z/NZ with x(a) # 1. Then

Yo x@)= ). xax)=x(a) Y xl),

x€(Z/NZ)* x€(Z/NZ)* x€(Z/NZ)*

where multiplying by a just reindexes the elements of Z/NZ. So we have

(x1,x2) = (), 1) = Z x(z) = 0. 0

E(Z/NZ)*

'We are being sloppy here by using * to both mean dual and the group of units. In the case of ((Z/NZ)*)*,
we mean Hom((Z/NZ)*, S*).



1.2.2 The Fourier transform

Definition 1.4. Suppose f is a complex function on a finite group G. The Fourier trans-
form f is a function on G*

FOO =060 =D x@)f(x)
relG
Duality for infinite abelian groups (with a topology) follows a few rules:
1. The dualizing object is S?.
2. Groups should be locally compact

3. Homomorphisms should be continuous.

Example 1.2. Let G = Z. Then G* = Hom(Z, S') = S'. Let H = S'. Then H* is the
continuous homomorphisms from S* — S (z + 2™ for n € Z). These two groups are dual
to each other.

The fourier transform takes function on S' to a fourier series (a function on Z) by
sending

[ Z cn€®™M o = / e 2™z f(2) dz.
n z€St
If G =R, then G* = Hom(R, S!) = R. This gives the fourier transform on R.

1.2.3 Existence of “enough” injective modules

Definition 1.5. An injective module I is a module with the following property. If the
sequence 0 — B — A is exact, then any map B — [ induces a homomorphism A — I.
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It is not immediately clear how we can find injective modules. The first step is to find
a divisible abelian group.
We want to say that every module is a submodule of an injective module.

Definition 1.6. A group G is divisible if given g € G and n € Z™, there exists some h € G
with nh = g.

Example 1.3. Q/Z is a divisible abelian group.

Finitely generated abelian groups are never divisible, except for the trivial group.



Proposition 1.3. Let I be a module. If it is divisible as an abelian group, it is injective
as a module.

Proof. Pick a € A with a ¢ B. We want to extend f to a. Pick the smallest n > 0 so that
na € B if n exists. Extend f to a by putting f(a) = g, where g € [ satisfies ng = f(z). If
n does not exist, then put f(a) equals anything (it doesn’t matter what we put here). Now

extend f to all of A using Zorn’s lemma (choose the maximal extension from submodules
of A to I). O

Proposition 1.4. Fvery abelian group is contained in an injective module.

Proof. By the previous proposition, Q/Z is injective, and given an abelian group G with
an element a # 0 in G, we can find a homomorphism f : G — Q/Z such that f(a) # 0. So
any abelian group G is a subset of a (possibly infinite) product of Q/Zs. O

Proposition 1.5. Let R be a ring. Then the dual R* is an injective R-module

Proof. The key point is that Homyz(R,Q/Z) is an injective R-module. This is the dual
of R as a Z-module. Be careful; Q/Z is a Z-module but not necessarily an R-module. If
f € Hom(R,Z) and r,s € R, define fr by fr(z) = f(rs) This makes Homz(R,Q/Z) a
right R-module.

The second key point is that Homp (M, Hom(R,Q/Z)) = Homz(M,Q/Z); this is easy
but confusing to actually write out, so we leave it as an exercise. So finding an induced
homomorphism from A — Hom (R, Q/Z) is the same problem as finding an induced homo-
morphism from A — Q/Z, which is possible because Q/Z is injective.

0 B > C 0 B C
l = - - l L//
Hom(R, Q/Z) Q/Z
So R* = Hom(R,Q/Z) is injective, as claimed. O

2 Limits and Colimits

Recall from the lecture on category theory that a limit of a family {G,} is a universal
object with morphisms from G — G, for each a.

2.1 Colimits

Definition 2.1. A colimit G of the family {G,} is universal object with morphisms from
G, — G for each «. In other words, a colimit is the same concept as a limit, but the



arrows (morphisms) go the other way.

G Ga — G3

93,1

A special case is that if G; — G;41 is injective for all 4, then the colimit, G, is more or
less the union of the Gj;.

Gy Gy Gy Gs
\ . /

Example 2.1. Q/Z is the union of Z/Z C (3Z)/Z C (:2)/Z C (HZ)]Z.C ---.

2.1.1 Examples of colimits

Recall that the kernel f : A — B, where A, B are groups is the equalizer of f and 1, the
trivial map from A — B; this is the limit of A, B with the morphisms f, 1.

Definition 2.2. The cokernel X of A and B is the colimit of A, B with morphisms f, 1.

A——IB——Y
] \:
\)X

This can also be thought of as the coequalizer of f, 1, where the coequalizer has the
same definition as the equalizer but with the arrows reversed.

Definition 2.3. The push-out X is the colimit of A and B with morphisms f : A — C
and g: B— C.
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When do colimits preserve exactlness? Say we have the following diagram with rows exact:

2.2 Exact sequences of colimits

Then
O—=colim A; — colim B; — colim C; — 0

is right exact but not left exact.

Example 2.2. Here is an example where the colimit is not left exact.

0 727 Z/2Z — 0
XQT T
0 Z 7 =2 Z/2Z — 0
bl
7 —— 7 —— ZL]27

The colimit Z & Z /27 X% 7@ Z,/27 is not injective.

When do colimits preserve exactness, then?



Definition 2.4. A directed set S is a partially ordered set such that if a,b € S, there exists
acwitha<candb<e.

Example 2.3. The set N is directed under the usual ordering <.
Definition 2.5. A direct limit is a colimit of a family indexed by a directed set.
Proposition 2.1. Direct limits preserve exactness.

Proof. Suppose S is a directed set and we are taking the colimit over a family indexed by
S. We have modules A; for ¢ € § with A; — A; with ¢ < j. Every element of the colimit
is represented by some a € A; for some i. This is because any element of the colimit is
represented by some sum of elements a; € A; for various j € S; then we can pick ¢ > all
these j, and take the sum of the images of a; in A..

Now suppose we have exact sequences 0 — A; - B; — C; — 0 for ¢ € S. We want to
show that colim A; — colim B; is injective. Pick a € colim A;. Then a is represented by
some a; € A; for some i € S. Now suppose that a; has image 0 in colim B;. If b; is the
image of s;, then b; = 0 in the colimit. So for some j, the image of b; in B; is 0. So if a; is
the image of a; in A;, then a; has image 0. Then a; = 0, which makes A; — B; = 0, and
so s; = 0 in the colimit. O

2.3 Inverse limits and the p-adic integers

Look at G = Z[1/p]/Z C Q/Z. This is the colimit of Z/pZ C Z/p*7Z C Z/p*Z C ---. What
is G*7 We get

Hom(Z/pZ,S") < Hom(Z/p*Z, S*) + Hom(Z/p*Z, S) « -
Definition 2.6. The inverse limit is the limit of a directed family {Ag}.

So the dual of a direct limit is the inverse limit of the duals. The dual for our example
above is the p-adic integers Z,. Look at

Z)pZ — L)p°T L/ p3Z - - -

Then the p-adic integers is the inverse limit of this. We get the set of sequences of base p
expansions going to the left an infinite distance. For example, if p = 3, such a sequence
would look like (...,2,1,2,2,0,1,2). Addition and multiplication are indeed well-defined
componentwise.

Does taking inverse limits preserve exactness? The answer is no, even if the set is
directed.



Example 2.4. Take the following diagram, where the rows are exact:

0 7,7 7./27
x3 X3 T

0 72,7 2,7/ — 0
X3 x3 lx?

0 72,7 7.)27 — 0

The inverse limits give us 0 — 0 — 0 — Z/27Z — 0, but this is not exact.

However, there is hope! Taking inverse limits preserve exactness if the A; preserve the
Mittag-Leffler? condition.

2This sounds like two people, but it is actually just one.



